
Unfortunately, this desguaring transformation won’t work at all! Do
you see why? If you don’t, try to run it.

2. The second is that we are implicitly depending on exactly what bminusS means;
if its meaning changes, so will that of uminusS, even if we don’t want it to. In
contrast, defining a functional abstraction that consumes two terms and generates
one representing the addition of the first to -1 times the second, and using this
to define the desugaring of both uminusS and bminusS, is a little more fault-
tolerant.

You might say that the meaning of subtraction is never going to change, so why
bother? Yes and no. Yes, it’s meaning is unlikely to change; but no, its imple-
mentation might. For instance, the developer may decide to log all uses of binary
subtraction. In the macro expansion, all uses of unary negation would also get
logged, but they would not in the second expansion.

Fortunately, in this particular case we have a much simpler option, which is to
define −b = −1 × b. This expansion works with the primitives we have, and follows
structural recursion. The reason we took the above detour, however, is to alert you to
these problems, and warn that you might not always be so fortunate.

5 Adding Functions to the Language
Let’s start turning this into a real programming language. We could add intermediate
features such as conditionals, but to do almost anything interesting we’re going to need
functions or their moral equivalent, so let’s get to it.

Exercise

Add conditionals to your language. You can either add boolean datatypes
or, if you want to do something quicker, add a conditional that treats 0 as
false and everything else as true.

What are the important test cases you should write?

Imagine, therefore, that we’re modeling a system like DrRacket. The developer
defines functions in the definitions window, and uses them in the interactions window.
For now, let’s assume all definitions go in the definitions window only (we’ll relax this
soon [REF]), and all expressions in the interactions window only. Thus, running a pro-
gram simply loads definitions. Because our interpreter corresponds to the interactions
window prompt, we’ll therefore assume it is supplied with a set of definitions. A set of definitions

suggests no
ordering, which
means, presumably,
any definition can
refer to any other.
That’s what I intend
here, but when you
are designing your
own language, be
sure to think about
this.

5.1 Defining Data Representations
To keep things simple, let’s just consider functions of one argument. Here are some
Racket examples:

(define (double x) (+ x x))

19



(define (quadruple x) (double (double x)))

(define (const5 _) 5)

Exercise

When a function has multiple arguments, what simple but important crite-
rion governs the names of those arguments?

What are the parts of a function definition? It has a name (above, double, quadru-
ple, and const5), which we’ll represent as a symbol ('double, etc.); its formal pa-
rameter or argument has a name (e.g., x), which too we can model as a symbol ('x);
and it has a body. We’ll determine the body’s representation in stages, but let’s start to
lay out a datatype for function definitions:

<fundef> ::=

(define-type FunDefC

[fdC (name : symbol) (arg : symbol) (body : ExprC)])

What is the body? Clearly, it has the form of an arithmetic expression, and some-
times it can even be represented using the existing ArithC language: for instance, the
body of const5 can be represented as (numC 5). But representing the body of dou-
ble requires something more: not just addition (which we have), but also “x”. You are
probably used to calling this a variable, but we will not use that term for now. Instead,
we will call it an identifier. I promise we’ll

return to this issue
of nomenclature
later [REF].

Do Now!

Anything else?

Finally, let’s look at the body of quadruple. It has yet another new construct:
a function application. Be very careful to distinguish between a function definition,
which describes what the function is, and an application, which uses it. These are
uses. The argument (or actual parameter) in the inner application of double is x;
the argument in the outer application is (double x). Thus, the argument can be any
complex expression.

Let’s commit all this to a crisp datatype. Clearly we’re extending what we had
before (because we still want all of arithmetic). We’ll give a new name to our datatype
to signify that it’s growing up:

<exprC> ::=

(define-type ExprC

[numC (n : number)]

<idC-def>
<app-def>
[plusC (l : ExprC) (r : ExprC)]

[multC (l : ExprC) (r : ExprC)])

20



Identifiers are closely related to formal parameters. When we apply a function by
giving it a value for its parameter, we are in effect asking it to replace all instances
of that formal parameter in the body—i.e., the identifiers with the same name as the
formal parameter—with that value. To simplify this process of search-and-replace, we Observe that we are

being coy about a
few issues: what
kind of “value”
[REF] and when to
replace [REF].

might as well use the same datatype to represent both. We’ve already chosen symbols
to represent formal parameters, so:

<idC-def> ::=

[idC (s : symbol)]

Finally, applications. They have two parts: the function’s name, and its argument.
We’ve already agreed that the argument can be any full-fledged expression (including
identifiers and other applications). As for the function name, it again makes sense
to use the same datatype as we did when giving the function its name in a function
definition. Thus:

<app-def> ::=

[appC (fun : symbol) (arg : ExprC)]

identifying which function to apply, and providing its argument.
Using these definitions, it’s instructive to write out the representations of the exam-

ples we defined above:

• (fdC 'double 'x (plusC (idC 'x) (idC 'x)))

• (fdC 'quadruple 'x (appC 'double (appC 'double (idC 'x))))

• (fdC 'const5 '_ (numC 5))

We also need to choose a representation for a set of function definitions. It’s convenient
to represent these by a list. Look out! Did you

notice that we
spoke of a set of
function definitions,
but chose a list
representation?
That means we’re
using an ordered
collection of data to
represent an
unordered entity. At
the very least, then,
when testing, we
should use any and
all permutations of
definitions to ensure
we haven’t subtly
built in a
dependence on the
order.

5.2 Growing the Interpreter
Now we’re ready to tackle the interpreter proper. First, let’s remind ourselves of what
it needs to consume. Previously, it consumed only an expression to evaluate. Now it
also needs to take a list of function definitions:

<interp> ::=

(define (interp [e : ExprC] [fds : (listof FunDefC)]) : number

<interp-body>)

Let’s revisit our old interpreter (section 3). In the case of numbers, clearly we still
return the number as the answer. In the addition and multiplication case, we still need
to recur (because the sub-expressions might be complex), but which set of function
definitions do we use? Because the act of evaluating an expression neither adds nor
removes function definitions, the set of definitions remains the same, and should just
be passed along unchanged in the recursive calls.

<interp-body> ::=

21



(type-case ExprC e

[numC (n) n]

<idC-interp-case>
<appC-interp-case>
[plusC (l r) (+ (interp l fds) (interp r fds))]

[multC (l r) (* (interp l fds) (interp r fds))])

Now let’s tackle application. First we have to look up the function definition, for
which we’ll assume we have a helper function of this type available:

; get-fundef : symbol * (listof FunDefC) -> FunDefC

Assuming we find a function of the given name, we need to evaluate its body. How-
ever, remember what we said about identifiers and parameters? We must “search-and-
replace”, a process you have seen before in school algebra called substitution. This is
sufficiently important that we should talk first about substitution before returning to the
interpreter (section 5.4).

5.3 Substitution
Substitution is the act of replacing a name (in this case, that of the formal parameter)
in an expression (in this case, the body of the function) with another expression (in this
case, the actual parameter). Let’s define its type:

; subst : ExprC * symbol * ExprC -> ExprC

It helps to also give its parameters informative names:
<subst> ::=

(define (subst [what : ExprC] [for : symbol] [in : ExprC]) : ExprC

<subst-body>)

The first argument is what we want to replace the name with; the second is for what
name we want to perform substitution; and the third is in which expression we want to
do it.

Do Now!

Suppose we want to substitute 3 for the identifier x in the bodies of the
three example functions above. What should it produce?

In double, this should produce (+ 3 3); in quadruple, it should produce (dou-
ble (double 3)); and in const5, it should produce 5 (i.e., no substitution happens
because there are no instances of x in the body). A common mistake

is to assume that the
result of
substituting, e.g., 3
for x in double is
(define (double

x) (+ 3 3)).
This is incorrect.
We only substitute
at the point when
we apply the
function, at which
point the function’s
invocation is
replaced by its
body. The header
enables us to find
the function and
ascertain the name
of its parameter; but
only its body
remains for
evaluation.
Examine how
substitution is used
to notice the type
error that would
result from
returning a function
definition.

These examples already tell us what to do in almost all the cases. Given a number,
there’s nothing to substitute. If it’s an identifier, we haven’t seen an example with a
different identifier but you’ve guessed what should happen: it stays unchanged. In the
other cases, descend into the sub-expressions, performing substitution.

22



Before we turn this into code, there’s an important case to consider. Suppose the
name we are substituting happens to be the name of a function. Then what should
happen?

Do Now!

What, indeed, should happen?

There are many ways to approach this question. One is from a design perspective:
function names live in their own “world”, distinct from ordinary program identifiers.
Some languages (such as C and Common Lisp, in slightly different ways) take this
perspective, and partition identifiers into different namespaces depending on how they
are used. In other languages, there is no such distinction; indeed, we will examine such
languages soon [REF].

For now, we will take a pragmatic viewpoint. Because expressions evaluate to
numbers, that means a function name could turn into a number. However, numbers
cannot name functions, only symbols can. Therefore, it makes no sense to substitute
in that position, and we should leave the function name unmolested irrespective of its
relationship to the variable being substituted. (Thus, a function could have a parameter
named x as well as refer to another function called x, and these would be kept distinct.)

Now we’ve made all our decisions, and we can provide the body code:
<subst-body> ::=

(type-case ExprC in

[numC (n) in]

[idC (s) (cond

[(symbol=? s for) what]

[else in])]

[appC (f a) (appC f (subst what for a))]

[plusC (l r) (plusC (subst what for l)

(subst what for r))]

[multC (l r) (multC (subst what for l)

(subst what for r))])

Exercise

Observe that, whereas in the numC case the interpreter returned n, substi-
tution returns in (i.e., the original expression, equivalent at that point to
writing (numC n). Why?

5.4 The Interpreter, Resumed
Phew! Now that we’ve completed the definition of substitution (or so we think), let’s
complete the interpreter. Substitution was a heavyweight step, but it also does much of
the work involved in applying a function. It is tempting to write

<appC-interp-case-take-1> ::=

[appC (f a) (local ([define fd (get-fundef f fds)])

(subst a

23



(fdC-arg fd)

(fdC-body fd)))]

Tempting, but wrong.
Do Now!

Do you see why?

Reason from the types. What does the interpreter return? Numbers. What does
substitution return? Oh, that’s right, expressions! For instance, when we substituted in
the body of double, we got back the representation of (+ 5 5). This is not a valid
answer for the interpreter. Instead, it must be reduced to an answer. That, of course, is
precisely what the interpreter does:

<appC-interp-case> ::=

[appC (f a) (local ([define fd (get-fundef f fds)])

(interp (subst a

(fdC-arg fd)

(fdC-body fd))

fds))]

Okay, that leaves only one case: identifiers. What could possibly be complicated
about them? They should be just about as simple as numbers! And yet we’ve put them
off to the very end, suggesting something subtle or complex is afoot.

Do Now!

Work through some examples to understand what the interpreter should do
in the identifier case.

Let’s suppose we had defined double as follows:

(define (double x) (+ x y))

When we substitute 5 for x, this produces the expression (+ 5 y). So far so good,
but what is left to substitute y? As a matter of fact, it should be clear from the very
outset that this definition of double is erroneous. The identifier y is said to be free, an
adjective that in this setting has negative connotations.

In other words, the interpreter should never confront an identifier. All identifiers
ought to be parameters that have already been substituted (known as bound identifiers—
here, a positive connotation) before the interpreter ever sees them. As a result, there is
only one possible response given an identifier:

<idC-interp-case> ::=

[idC (_) (error 'interp "shouldn't get here")]

And that’s it!
Finally, to complete our interpreter, we should define get-fundef:

24



(define (get-fundef [n : symbol] [fds : (listof FunDefC)]) : FunDefC

(cond

[(empty? fds) (error 'get-fundef "reference to undefined function")]

[(cons? fds) (cond

[(equal? n (fdC-name (first fds))) (first fds)]

[else (get-fundef n (rest fds))])]))

5.5 Oh Wait, There’s More!
Earlier, we gave the following type to subst:

; subst : ExprC * symbol * ExprC -> ExprC

Sticking to surface syntax for brevity, suppose we apply double to (+ 1 2). This
would substitute (+ 1 2) for each x, resulting in the following expression—(+ (+ 1

2) (+ 1 2))—for interpretation. Is this necessarily what we want?
When you learned algebra in school, you may have been taught to do this differ-

ently: first reduce the argument to an answer (in this case, 3), then substitute the answer
for the parameter. This notion of substitution might have the following type instead:

; subst : number * symbol * ExprC -> ExprC

Careful now: we can’t put raw numbers inside expressions, so we’d have to con-
stantly wrap the number in an invocation of numC. Thus, it would make sense for subst
to have a helper that it invokes after wrapping the first parameter. (In fact, our existing
subst would be a perfectly good candidate: because it accepts any ExprC in the first
parameter, it will certainly work just fine with a numC.) In fact, we don’t

even have
substitution quite
right! The version
of substitution we
have doesn’t scale
past this language
due to a subtle
problem known as
“name capture”.
Fixing substitution
is complex, subtle,
and an exciting
intellectual
endeavor, but it’s
not the direction I
want to go in here.
We’ll instead
sidestep this
problem in this
book. If you’re
interested, however,
read about the
lambda calculus,
which provides the
tools for defining
substitution
correctly.

Exercise

Modify your interpreter to substitute names with answers, not expressions.

We’ve actually stumbled on a profound distinction in programming languages. The
act of evaluating arguments before substituting them in functions is called eager appli-
cation, while that of deferring evaluation is called lazy—and has some variations. For
now, we will actually prefer the eager semantics, because this is what most mainstream
languages adopt. Later [REF], we will return to talking about the lazy application
semantics and its implications.

6 From Substitution to Environments
Though we have a working definition of functions, you may feel a slight unease about
it. When the interpreter sees an identifier, you might have had a sense that it needs to
“look it up”. Not only did it not look up anything, we defined its behavior to be an
error! While absolutely correct, this is also a little surprising. More importantly, we
write interpreters to understand and explain languages, and this implementation might
strike you as not doing that, because it doesn’t match our intuition.

25


